Bibliography
- M. Batty et al., “Smart cities of the future,” The European Physical Journal Special Topics, vol. 214, no. 1, pp. 481–518, 2012.
- T. Tettamanti and I. Varga, “Mobile phone location area based traffic flow estimation in urban road traffic,” Columbia International Publishing, Advances in Civil and Environmental Engineering, vol. 1, no. 1, pp. 1–15, 2014.
- T. Egedy and B. Ságvári, “Urban geographical patterns of the relationship between mobile communication, social networks and economic development–the case of Hungary,” Hungarian Geographical Bulletin, vol. 70, no. 2, pp. 129–148, 2021.
- M. Szocska et al., “Countrywide population movement monitoring using mobile devices generated (big) data during the COVID-19 crisis,” Scientific Reports, vol. 11, no. 1, pp. 1–9, 2021.
- L. Pappalardo, F. Simini, S. Rinzivillo, D. Pedreschi, F. Giannotti, and A.-L. Barabási, “Returners and explorers dichotomy in human mobility,” Nature communications, vol. 6, p. 8166, 2015.
- A. Cecaj, M. Mamei, and N. Bicocchi, “Re-identification of anonymized CDR datasets using social network data,” in 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), 2014, pp. 237–242.
- Z. Huang et al., “Modeling real-time human mobility based on mobile phone and transportation data fusion,” Transportation research part C: emerging technologies, vol. 96, pp. 251–269, 2018.
- A. Furno, N.-E. El Faouzi, M. Fiore, and R. Stanica, “Fusing GPS probe and mobile phone data for enhanced land-use detection,” in 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017, pp. 693–698.
- L. Pappalardo, D. Pedreschi, Z. Smoreda, and F. Giannotti, “Using big data to study the link between human mobility and socio-economic development,” in 2015 IEEE International Conference on Big Data (Big Data), 2015, pp. 871–878.
- Y. Xu, A. Belyi, I. Bojic, and C. Ratti, “Human mobility and socioeconomic status: Analysis of Singapore and Boston,” Computers, Environment and Urban Systems, vol. 72, pp. 51–67, 2018.
- J. Blumenstock, G. Cadamuro, and R. On, “Predicting poverty and wealth from mobile phone metadata,” Science, vol. 350, no. 6264, pp. 1073–1076, 2015.
- S. F. Sultan, H. Humayun, U. Nadeem, Z. K. Bhatti, and S. Khan, “Mobile phone price as a proxy for socio-economic indicators,” in Proceedings of the Seventh International Conference on Information and Communication Technologies and Development, 2015, pp. 1–4.
- A. Kiss and Z. Matyusz, “Az ingázás, mint forgalomkeltő tényező,” Munkaügyi szemle, vol. 59, no. 5, pp. 20–34, 2015.
- A. McAfee, E. Brynjolfsson, T. H. Davenport, D. J. Patil, and D. Barton, “Big data: the management revolution,” Harvard business review, vol. 90, no. 10, pp. 60–68, 2012.
- M. Williams, “Meso-computing and meso-data: the forgotten middle,” milliams.com. Aug. 28, 2020. Available: https://milliams.com/posts/2020/mesocomputing/
- L. Pappalardo, L. Ferres, M. Sacasa, C. Cattuto, and L. Bravo, “Evaluation of home detection algorithms on mobile phone data using individual-level ground truth,” EPJ data science, vol. 10, no. 1, p. 29, 2021.
- M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual human mobility patterns,” nature, vol. 453, no. 7196, p. 779, 2008.
- L. Pappalardo, M. Vanhoof, L. Gabrielli, Z. Smoreda, D. Pedreschi, and F. Giannotti, “An analytical framework to nowcast well-being using mobile phone data,” International Journal of Data Science and Analytics, vol. 2, no. 1-2, pp. 75–92, 2016.
- C. Cottineau and M. Vanhoof, “Mobile phone indicators and their relation to the socioeconomic organisation of cities,” ISPRS International Journal of Geo-Information, vol. 8, no. 1, p. 19, 2019.
- V. A. Traag, A. Browet, F. Calabrese, and F. Morlot, “Social event detection in massive mobile phone data using probabilistic location inference,” in 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, 2011, pp. 625–628.
- F. H. Z. Xavier, L. M. Silveira, J. M. de Almeida, A. Ziviani, C. H. S. Malab, and H. T. Marques-Neto, “Analyzing the workload dynamics of a mobile phone network in large scale events,” in Proceedings of the first workshop on urban networking, 2012, pp. 37–42.
- M. Mamei and M. Colonna, “Estimating attendance from cellular network data,” International Journal of Geographical Information Science, vol. 30, no. 7, pp. 1281–1301, 2016.
- B. Furletti, R. Trasarti, P. Cintia, and L. Gabrielli, “Discovering and understanding city events with big data: the case of rome,” Information, vol. 8, no. 3, p. 74, 2017.
- D. Kondor, S. Grauwin, Z. Kallus, I. Gódor, S. Sobolevsky, and C. Ratti, “Prediction limits of mobile phone activity modelling,” Royal Society open science, vol. 4, no. 2, p. 160900, 2017.
- H. T. Marques-Neto et al., “Understanding human mobility and workload dynamics due to different large-scale events using mobile phone data,” Journal of Network and Systems Management, vol. 26, no. 4, pp. 1079–1100, 2018.
- H. Hiir, R. Sharma, A. Aasa, and E. Saluveer, “Impact of Natural and Social Events on Mobile Call Data Records – An Estonian Case Study,” in Complex Networks and Their Applications VIII, Cham, 2020, pp. 415–426.
- A. Rotman and M. Shalev, “Using Location Data from Mobile Phones to Study Participation in Mass Protests,” Sociological Methods & Research, p. 0049124120914926, 2020.
- M. Wirz, T. Franke, D. Roggen, E. Mitleton-Kelly, P. Lukowicz, and G. Tröster, “Probing crowd density through smartphones in city-scale mass gatherings,” EPJ Data Science, vol. 2, no. 1, pp. 1–24, 2013.
- I. Barnett, T. Khanna, and J.-P. Onnela, “Social and spatial clustering of people at humanity’s largest gathering,” PloS one, vol. 11, no. 6, p. e0156794, 2016.
- Y. Xu, J. Xue, S. Park, and Y. Yue, “Towards a multidimensional view of tourist mobility patterns in cities: A mobile phone data perspective,” Computers, Environment and urban systems, vol. 86, p. 101593, 2021.
- Y. Xu, D. Zou, S. Park, Q. Li, S. Zhou, and X. Li, “Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea,” Computers, Environment and Urban Systems, vol. 92, p. 101753, 2022.
- C. Qian, W. Li, Z. Duan, D. Yang, and B. Ran, “Using mobile phone data to determine spatial correlations between tourism facilities,” Journal of Transport Geography, vol. 92, p. 103018, 2021.
- S. Brdar, K. Gavrić, D. Ćulibrk, and V. Crnojević, “Unveiling spatial epidemiology of HIV with mobile phone data,” Scientific reports, vol. 6, no. 1, pp. 1–13, 2016.
- M. Salathé, “Digital epidemiology: what is it, and where is it going?,” Life sciences, society and policy, vol. 14, no. 1, pp. 1–5, 2018.
- H.-A. Park, H. Jung, J. On, S. K. Park, and H. Kang, “Digital epidemiology: use of digital data collected for non-epidemiological purposes in epidemiological studies,” Healthcare informatics research, vol. 24, no. 4, p. 253, 2018.
- E. Willberg, O. Järv, T. Väisänen, and T. Toivonen, “Escaping from cities during the covid-19 crisis: Using mobile phone data to trace mobility in finland,” ISPRS International Journal of Geo-Information, vol. 10, no. 2, p. 103, 2021.
- G. Romanillos et al., “The city turned off: Urban dynamics during the COVID-19 pandemic based on mobile phone data,” Applied Geography, vol. 134, p. 102524, 2021.
- W. Do Lee, M. Qian, and T. Schwanen, “The association between socioeconomic status and mobility reductions in the early stage of England’s COVID-19 epidemic,” Health & Place, p. 102563, 2021.
- M. Yechezkel, A. Weiss, I. Rejwan, E. Shahmoon, S. Ben-Gal, and D. Yamin, “Human mobility and poverty as key drivers of COVID-19 transmission and control,” BMC public health, vol. 21, no. 1, pp. 1–13, 2021.
- H. Khataee, I. Scheuring, A. Czirok, and Z. Neufeld, “Effects of social distancing on the spreading of COVID-19 inferred from mobile phone data,” Scientific Reports, vol. 11, no. 1, pp. 1–9, 2021.
- K. Bushman, K. Pelechrinis, and A. Labrinidis, “Effectiveness and compliance to social distancing during COVID-19,” arXiv preprint arXiv:2006.12720, 2020.
- S. Gao et al., “Association of mobile phone location data indications of travel and stay-at-home mandates with covid-19 infection rates in the us,” JAMA network open, vol. 3, no. 9, pp. e2020485–e2020485, 2020.
- S. Hu, C. Xiong, M. Yang, H. Younes, W. Luo, and L. Zhang, “A big-data driven approach to analyzing and modeling human mobility trend under non-pharmaceutical interventions during COVID-19 pandemic,” Transportation Research Part C: Emerging Technologies, vol. 124, p. 102955, 2021.
- A. I. Tokey, “Spatial association of mobility and COVID-19 infection rate in the USA: A county-level study using mobile phone location data,” Journal of Transport & Health, vol. 22, p. 101135, 2021.
- L. Lucchini et al., “Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures,” Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021.
- T. Yabe, K. Tsubouchi, N. Fujiwara, T. Wada, Y. Sekimoto, and S. V. Ukkusuri, “Non-compulsory measures sufficiently reduced human mobility in Tokyo during the COVID-19 epidemic,” Scientific reports, vol. 10, no. 1, pp. 1–9, 2020.
- A. Sadowski, Z. Galar, R. Walasek, G. Zimon, and P. Engelseth, “Big data insight on global mobility during the Covid-19 pandemic lockdown,” Journal of big Data, vol. 8, no. 1, pp. 1–33, 2021.
- N. Oliver et al., “Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle.” American Association for the Advancement of Science, 2020.
- B. C. Csáji et al., “Exploring the mobility of mobile phone users,” Physica A: statistical mechanics and its applications, vol. 392, no. 6, pp. 1459–1473, 2013.
- S. Jiang, J. Ferreira, and M. C. Gonzalez, “Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore,” IEEE Transactions on Big Data, vol. 3, no. 2, pp. 208–219, 2017.
- P. Fiadino, V. Ponce-Lopez, J. Antonio, M. Torrent-Moreno, and A. D’Alconzo, “Call Detail Records for Human Mobility Studies: Taking Stock of the Situation in the’ Always Connected Era,’” in Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, 2017, pp. 43–48.
- G. A. Zagatti et al., “A trip to work: Estimation of origin and destination of commuting patterns in the main metropolitan regions of Haiti using CDR,” Development Engineering, vol. 3, pp. 133–165, 2018.
- M. Mamei, N. Bicocchi, M. Lippi, S. Mariani, and F. Zambonelli, “Evaluating origin–destination matrices obtained from CDR data,” Sensors, vol. 19, no. 20, p. 4470, 2019.
- H. Barbosa et al., “Uncovering the socioeconomic facets of human mobility,” Scientific reports, vol. 11, no. 1, pp. 1–13, 2021.
- Q. Wang, N. E. Phillips, M. L. Small, and R. J. Sampson, “Urban mobility and neighborhood isolation in America’s 50 largest cities,” Proceedings of the National Academy of Sciences, vol. 115, no. 30, pp. 7735–7740, 2018.
- E. Bokányi, S. Juhász, M. Karsai, and B. Lengyel, “Universal patterns of long-distance commuting and social assortativity in cities,” Scientific reports, vol. 11, no. 1, pp. 1–10, 2021.
- M. Diao, Y. Zhu, J. Ferreira Jr, and C. Ratti, “Inferring individual daily activities from mobile phone traces: A Boston example,” Environment and Planning B: Planning and Design, vol. 43, no. 5, pp. 920–940, 2016.
- Y. Xu, S.-L. Shaw, Z. Zhao, L. Yin, Z. Fang, and Q. Li, “Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach,” Transportation, vol. 42, no. 4, pp. 625–646, 2015.
- M. Vanhoof, F. Reis, T. Ploetz, and Z. Smoreda, “Assessing the Quality of Home Detection from Mobile Phone Data for Official Statistics,” Journal of official statistics, vol. 34, no. 4, pp. 935–960, 2018.
- L. Yin, N. Lin, and Z. Zhao, “Mining daily activity chains from large-scale mobile phone location data,” Cities, vol. 109, p. 103013, 2021.
- T. Dannemann, B. Sotomayor-Gómez, and H. Samaniego, “The time geography of segregation during working hours,” Royal Society open science, vol. 5, no. 10, p. 180749, 2018.
- R. Trasarti et al., “Discovering urban and country dynamics from mobile phone data with spatial correlation patterns,” Telecommunications Policy, vol. 39, no. 3-4, pp. 347–362, 2015.
- K.-S. Lee, S. Y. You, J. K. Eom, J. Song, and J. H. Min, “Urban spatiotemporal analysis using mobile phone data: Case study of medium-and large-sized Korean cities,” Habitat International, vol. 73, pp. 6–15, 2018.
- M. Ghahramani, M. C. Zhou, and C. T. Hon, “Mobile phone data analysis: A spatial exploration toward hotspot detection,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 1, pp. 351–362, 2018.
- Z. Fan et al., “Estimation of urban crowd flux based on mobile phone location data: A case study of Beijing, China,” Computers, Environment and Urban Systems, vol. 69, pp. 114–123, 2018.
- L. Ni, X. C. Wang, and X. M. Chen, “A spatial econometric model for travel flow analysis and real-world applications with massive mobile phone data,” Transportation research part C: emerging technologies, vol. 86, pp. 510–526, 2018.
- L. Gauvin et al., “Gender gaps in urban mobility,” Humanities and Social Sciences Communications, vol. 7, no. 1, pp. 1–13, 2020.
- R. Goel, R. Sharma, and A. Aasa, “Understanding gender segregation through Call Data Records: An Estonian case study,” Plos one, vol. 16, no. 3, p. e0248212, 2021.
- I. M. Al-Zuabi, A. Jafar, and K. Aljoumaa, “Predicting customer’s gender and age depending on mobile phone data,” Journal of Big Data, vol. 6, no. 1, pp. 1–16, 2019.
- T. Aledavood et al., “Daily rhythms in mobile telephone communication,” PloS one, vol. 10, no. 9, p. e0138098, 2015.
- C. Roy, D. Monsivais, K. Bhattacharya, R. I. M. Dunbar, and K. Kaski, “Morningness–eveningness assessment from mobile phone communication analysis,” Scientific Reports, vol. 11, no. 1, pp. 1–13, 2021.
- S. Hanson and P. Hanson, “The travel-activity patterns of urban residents: dimensions and relationships to sociodemographic characteristics,” Economic geography, vol. 57, no. 4, pp. 332–347, 1981.
- M.-P. Kwan, “Gender, the home-work link, and space-time patterns of nonemployment activities,” Economic geography, vol. 75, no. 4, pp. 370–394, 1999.
- T. AUNG, K. K. LWIN, Y. SEKIMOTO, and others, “Identification and Classification of Land Use Types in Yangon City by Using Mobile Call Detail Records (CDRs) Data,” Journal of the Eastern Asia Society for Transportation Studies, vol. 13, pp. 1114–1133, 2019.
- N. Pokhriyal and D. C. Jacques, “Combining disparate data sources for improved poverty prediction and mapping,” Proceedings of the National Academy of Sciences, vol. 114, no. 46, pp. E9783–E9792, 2017.
- S. Šćepanović, I. Mishkovski, P. Hui, J. K. Nurminen, and A. Ylä-Jääski, “Mobile phone call data as a regional socio-economic proxy indicator,” PloS one, vol. 10, no. 4, 2015.
- T. Zhao, H. Huang, X. Yao, X. Fu, and others, “Predicting individual socioeconomic status from mobile phone data: a semi-supervised hypergraph-based factor graph approach,” International Journal of Data Science and Analytics, vol. 9, no. 3, pp. 361–372, 2020.
- G. Castillo, F. Layedra, M.-B. Guaranda, P. Lara, and C. Vaca, “The silence of the cantons: Estimating villages socioeconomic status through mobile phones data,” in 2018 International Conference on eDemocracy & eGovernment (ICEDEG), 2018, pp. 172–178.
- I. Ucar, M. Gramaglia, M. Fiore, Z. Smoreda, and E. Moro, “News or social media? Socio-economic divide of mobile service consumption,” Journal of the Royal Society Interface, vol. 18, no. 185, p. 20210350, 2021.
- S. Vilella, D. Paolotti, G. Ruffo, and L. Ferres, “News and the city: understanding online press consumption patterns through mobile data,” EPJ Data Science, vol. 9, no. 1, pp. 1–18, 2020.
- M. G. Beiró, L. Bravo, D. Caro, C. Cattuto, L. Ferres, and E. Graells-Garrido, “Shopping mall attraction and social mixing at a city scale,” EPJ Data Science, vol. 7, pp. 1–21, 2018.
- M. Lenormand, H. Samaniego, J. C. Chaves, V. da Fonseca Vieira, M. A. H. B. da Silva, and A. G. Evsukoff, “Entropy as a measure of attractiveness and socioeconomic complexity in Rio de Janeiro metropolitan area,” Entropy, vol. 22, no. 3, p. 368, 2020.
- M. De Nadai, Y. Xu, E. Letouzé, M. C. González, and B. Lepri, “Socio-economic, built environment, and mobility conditions associated with crime: a study of multiple cities,” Scientific reports, vol. 10, no. 1, pp. 1–12, 2020.
- Y. Leo, E. Fleury, J. I. Alvarez-Hamelin, C. Sarraute, and M. Karsai, “Socioeconomic correlations and stratification in social-communication networks,” Journal of The Royal Society Interface, vol. 13, no. 125, p. 20160598, 2016.
- K. S. Kung, K. Greco, S. Sobolevsky, and C. Ratti, “Exploring universal patterns in human home-work commuting from mobile phone data,” PloS one, vol. 9, no. 6, p. e96180, 2014.
- C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.
- A.-L. Barabasi, “The origin of bursts and heavy tails in human dynamics,” Nature, vol. 435, no. 7039, pp. 207–211, 2005.
- H.-H. Jo, M. Karsai, J. Kertész, and K. Kaski, “Circadian pattern and burstiness in mobile phone communication,” New Journal of Physics, vol. 14, no. 1, p. 013055, 2012.
- A. Cuttone, P. Bækgaard, V. Sekara, H. Jonsson, J. E. Larsen, and S. Lehmann, “Sensiblesleep: A bayesian model for learning sleep patterns from smartphone events,” PloS one, vol. 12, no. 1, p. e0169901, 2017.
- T. Aledavood, S. Lehmann, and J. Saramäki, “Social network differences of chronotypes identified from mobile phone data,” EPJ Data Science, vol. 7, no. 1, p. 46, 2018.
- T. Yasseri, R. Sumi, and J. Kertész, “Circadian patterns of wikipedia editorial activity: A demographic analysis,” PloS one, vol. 7, no. 1, p. e30091, 2012.
- T. Yasseri, G. Quattrone, and A. Mashhadi, “Temporal analysis of activity patterns of editors in collaborative mapping project of OpenStreetMap,” in Proceedings of the 9th International Symposium on Open Collaboration, 2013, pp. 1–4.
- F. Dzogang, S. Lightman, and N. Cristianini, “Circadian mood variations in Twitter content,” Brain and neuroscience advances, vol. 1, p. 2398212817744501, 2017.
- R. Ahas, A. Aasa, S. Silm, and M. Tiru, “Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data,” Transportation Research Part C: Emerging Technologies, vol. 18, no. 1, pp. 45–54, 2010.
- L. Lotero, R. G. Hurtado, L. M. Florı́a, and J. Gómez-Gardeñes, “Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes,” Royal Society open science, vol. 3, no. 10, p. 150654, 2016.
- D. Monsivais, K. Bhattacharya, A. Ghosh, R. I. M. Dunbar, and K. Kaski, “Seasonal and geographical impact on human resting periods,” Scientific reports, vol. 7, no. 1, pp. 1–10, 2017.
- D. Monsivais, A. Ghosh, K. Bhattacharya, R. I. M. Dunbar, and K. Kaski, “Tracking urban human activity from mobile phone calling patterns,” PLoS computational biology, vol. 13, no. 11, p. e1005824, 2017.
- T. Alakörkkö and J. Saramäki, “Circadian rhythms in temporal-network connectivity,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 9, p. 093115, 2020.
- A. Ogulenko, I. Benenson, I. Omer, and B. Alon, “Probabilistic positioning in mobile phone network and its consequences for the privacy of mobility data,” Computers, Environment and Urban Systems, vol. 85, p. 101550, 2021.
- F. Ricciato, G. Lanzieri, A. Wirthmann, and G. Seynaeve, “Towards a methodological framework for estimating present population density from mobile network operator data,” Pervasive and Mobile Computing, vol. 68, p. 101263, 2020.
- W. Tu et al., “Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns,” International Journal of Geographical Information Science, vol. 31, no. 12, pp. 2331–2358, 2017.
- A. Galeazzi et al., “Human mobility in response to COVID-19 in France, Italy and UK,” Scientific reports, vol. 11, no. 1, pp. 1–10, 2021.
- H. E. R. Shepherd, F. S. Atherden, H. M. T. Chan, A. Loveridge, and A. J. Tatem, “Domestic and international mobility trends in the United Kingdom during the COVID-19 pandemic: an analysis of facebook data,” International journal of health geographics, vol. 20, no. 1, pp. 1–13, 2021.
- J. Scholz and J. Jeznik, “Evaluating Geo-Tagged Twitter Data to Analyze Tourist Flows in Styria, Austria,” ISPRS International Journal of Geo-Information, vol. 9, no. 11, p. 681, 2020.
- B. Hawelka, I. Sitko, E. Beinat, S. Sobolevsky, P. Kazakopoulos, and C. Ratti, “Geo-located Twitter as proxy for global mobility patterns,” Cartography and Geographic Information Science, vol. 41, no. 3, pp. 260–271, 2014.
- R. Jurdak, K. Zhao, J. Liu, M. AbouJaoude, M. Cameron, and D. Newth, “Understanding human mobility from Twitter,” PloS one, vol. 10, no. 7, p. e0131469, 2015.
- D. Li and J. Liu, “Uncovering the relationship between point-of-interests-related human mobility and socioeconomic status,” Telematics and Informatics, vol. 39, pp. 49–63, 2019.
- National Media and Infocommunications Authority, Hungary, “A Nemzeti Média- és Hírközlési Hatóság mobilpiaci jelentése 2015. IV. – 2019. II. negyedév,” National Media and Infocommunications Authority, 23-25. Ostrom u., Budapest 1015, Hungary, Dec. 2019. Available: http://nmhh.hu/document/208458/NMHH_mobilpiaci_jelentes_2015Q42019Q2.pdf
- M. M. Al-Akaidi and H. Ali, “Performance analysis of antenna sectorisation in cell breathing,” 2003.
- K. S. Hivatal, “22.1.1.3. Népesség korév és nem szerint, január 1.” Available: https://www.ksh.hu/stadat_files/nep/hu/nep0003.html
- K. Christian, “Sziget Festival sees record attendance of 441,000.” Available: https://bbj.hu/budapest/culture/awards/sziget-festival-sees-record-attendance-of-441-000
- M. Sainani, “GSMArena Mobile Phone Devices.” Available: https://www.kaggle.com/msainani/gsmarena-mobile-devices
- V. J. Reddi, H. Yoon, and A. Knies, “Two billion devices and counting,” IEEE Micro, vol. 38, no. 1, pp. 6–21, 2018.
- A. Zehtab-Salmasi, A.-R. Feizi-Derakhshi, N. Nikzad-Khasmakhi, M. Asgari-Chenaghlu, and S. Nabipour, “Multimodal price prediction,” Annals of Data Science, pp. 1–17, 2021.
- R. Dissanayake and T. Amarasuriya, “Role of brand identity in developing global brands: A literature based review on case comparison between Apple iPhone vs Samsung smartphone brands,” Research journal of business and management, vol. 2, no. 3, pp. 430–440, 2015.
- E. Protalinski, “iPhone prices from the original to iPhone X.” Sep. 12, 2017. Available: https://venturebeat.com/2017/09/12/iphone-prices-from-the-original-to-iphone-x/
- Központi Statisztikai Hivatal, Budapest – Gazdaság és társadalom. Keleti Károly utca 5–7., 1024 Budapest, Hungary: Központi Statisztikai Hivatal, 2018.
- Hungarian Central Statistical Office, “Summary Tables (STADAT).” Available: https://www.ksh.hu/stadat_eng
- V. C. Corporation, “Visual Crossing Weather (2016-2017).” 2021. Available: https://www.visualcrossing.com/
- E. Summers et al., “DocNow/twarc: v2.9.5.” Zenodo, Mar. 2022. doi: 10.5281/zenodo.6327291.
- G. H. Pintér and I. Felde, “Awakening City: Traces of the Circadian Rhythm within the Mobile Phone Network Data,” Information, vol. 13, no. 3, p. 114, 2022, doi: 10.3390/info13030114.
- M. Vanhoof, W. Schoors, A. Van Rompaey, T. Ploetz, and Z. Smoreda, “Comparing regional patterns of individual movement using corrected mobility entropy,” Journal of Urban Technology, vol. 25, no. 2, pp. 27–61, 2018.
- J. Candia, M. C. González, P. Wang, T. Schoenharl, G. Madey, and A.-L. Barabási, “Uncovering individual and collective human dynamics from mobile phone records,” Journal of physics A: mathematical and theoretical, vol. 41, no. 22, p. 224015, 2008.
- O. Novović, S. Brdar, M. Mesaroš, V. Crnojević, and A. N. Papadopoulos, “Uncovering the Relationship between Human Connectivity Dynamics and Land Use,” ISPRS International Journal of Geo-Information, vol. 9, no. 3, p. 140, 2020.
- F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
- L. Galiana, B. Sakarovitch, and Z. Smoreda, “Understanding socio-spatial segregation in French cities with mobile phone data,” Unpublished manuscript, 2018.
- R. Ahas, S. Silm, O. Järv, E. Saluveer, and M. Tiru, “Using mobile positioning data to model locations meaningful to users of mobile phones,” Journal of urban technology, vol. 17, no. 1, pp. 3–27, 2010.
- I. Bojic, E. Massaro, A. Belyi, S. Sobolevsky, and C. Ratti, “Choosing the right home location definition method for the given dataset,” in International Conference on Social Informatics, 2015, pp. 194–208.
- Eurostat, “Employed persons working at nights as a percentage of the total employment, by sex, age and professional status.” 2020. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=lfsa_ewpnig&lang=en
- L. Pappalardo, F. Simini, G. Barlacchi, and R. Pellungrini, “scikit-mobility.” Zenodo, Jul. 2019. doi: 10.5281/zenodo.5979518.
- M. T. Rashid and D. Wang, “CovidSens: a vision on reliable social sensing for COVID-19,” Artificial intelligence review, vol. 54, no. 1, pp. 1–25, 2021.
- J. Hopewell and E. Meza, “Soccer’s Euro 2016: Big Ratings, Strategic Losses .” Available: https://variety.com/2016/tv/global/soccers-euro-2016-huge-ratings-nets-losses-1201812565/
- hirado.hu/MTI, “Csoportgyőztes az M4 Sport is.” Available: https://hirado.hu/2016/06/24/csoportgyoztes-az-m4-sport/
- hirado.hu/MTI, “Tízezrek ünnepelték a magyar válogatottat a Hősök terén.” Available: https://hirado.hu/2016/06/27/hatalmas-fiesztara-keszul-este-budapest/
- G. H. Pintér, L. Nádai, and I. Felde, “Analysis of Mobility Patterns during a Large Social Event,” in 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY), 2018, pp. 339–344. doi: 10.1109/SISY.2018.8524674.
- G. H. Pintér, L. Nádai, G. Bognár, Z. Biczó, and I. Felde, “Activity Pattern Analysis of the Mobile Phone Network During a Large Social Event,” in 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), 2019, pp. 1–5. doi: 10.1109/RIVF.2019.8713741.
- TheGuardian, “Thousands protest in Hungary over threat to Soros university.” Available: https://www.theguardian.com/world/2017/apr/09/thousands-protest-in-hungary-over-bill-threat-to-soros-university
- Dull, Szabolcs, “Ekkora tömeg régen vonult utcára Orbán ellen.” Apr. 10, 2017. Available: https://index.hu/belfold/2017/04/10/ekkora_tomeg_regen_vonult_utcara_orban_ellen/
- Központi Statisztikai Hivatal, “22.1.1.1. A népesség, népmozgalom főbb mutatói.” Available: https://www.ksh.hu/stadat_files/nep/hu/nep0001.html
- Központi Statisztikai Hivatal, “Calculated population data by settlement - Resident population in Hungary (2017 - 2020).” Available: http://statinfo.ksh.hu/Statinfo/QueryServlet?ha=NT6B01
- G. Pálóczi, “Researching commuting to work using the methods of complex network analysis,” Regional Statistics, vol. 6, no. 1, pp. 3–22, 2016.
- M. Barthelemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, “Characterization and modeling of weighted networks,” Physica a: Statistical mechanics and its applications, vol. 346, no. 1-2, pp. 34–43, 2005.
- M. Lakatos and G. Kapitány, “Daily Mobility of Labour Force (Commuting) and Travel in Budapest and in the Metropolitan Agglomeration Based on Data of the Population Census. Part II,” Területi Statisztika, vol. 56, no. 2, pp. 209–239, 2016, doi: 10.15196/TS560206.
- L. Koltai and A. Varró, “Ingázás a budapesti agglomerációban,” Új munkaügyi szemle, vol. 1, no. 3, pp. 26–37, 2020, Available: https://f.metropolitan.hu/upload/08df3e44257cfad7eb7c29983c72b975243a5ca0.pdf
- F. Espenak, “Solstices and Equinoxes: 2001 to 2050.” Feb. 20, 2018. Available: http://astropixels.com/ephemeris/soleq2001.html
- G. H. Pintér, A. Mosavi, and I. Felde, “Artificial intelligence for modeling real estate price using call detail records and hybrid machine learning approach,” Entropy, vol. 22, no. 12, p. 1421, 2020, doi: 10.3390/e22121421.
- G. Pintér and I. Felde, “Evaluating the Effect of the Financial Status to the Mobility Customs,” ISPRS International Journal of Geo-Information, vol. 10, no. 5, p. 328, 2021, doi: 10.3390/ijgi10050328.
- G. H. Pintér and I. Felde, “Analyzing the Behavior and Financial Status of Soccer Fans from a Mobile Phone Network Perspective: Euro 2016, a Case Study,” Information, vol. 12, no. 11, p. 468, 2021, doi: 10.3390/info12110468.
- L. Fernando, A. Surendra, S. Lokanathan, and T. Gomez, “Predicting population-level socio-economic characteristics using Call Detail Records (CDRs) in Sri Lanka,” in Proceedings of the Fourth International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets, 2018, pp. 1–12.
- Központi Statisztikai Hivatal, “12.8.1.9. A háztartások internetkapcsolat típusainak aránya.” Available: https://www.ksh.hu/stadat_files/ikt/hu/ikt0047.html
- G. H. Pintér and I. Felde, “Evaluation of urban daily routines by using Mobile Phone Indicators,” in 2019 IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI), 2019, pp. 314–319. doi: 10.1109/SACI46893.2019.9111495.